Senior Manager, Partner Science

  • Credit Karma
  • San Francisco, CA, USA
  • Mar 25, 2022
Full time Developer

Job Description

Credit Karma’s fast growing Data team is seeking an experienced Data Science Leader with Credit Risk Modeling background. This role will allow a motivated individual to build and lead a team of data scientists who will work closely with our bank and Fintech partners to build and optimize their targeting models on the Credit Karma platform. By doing this they will drive significant revenue for Credit Karma and its partners, while providing approval certainty for consumers. This is the most significant strategic initiative at Credit Karma, that will change the trajectory of the company and its’ industry.

What the job entails

  • Be the critical bridge between banking partners and the Credit Karma data science platform. Help some of the biggest financial institutions in the country work with the CK modeling platform.
  • Attract, build and mentor a strong team of data scientists who work hand-in-hand both with the internal data science teams, as well as partner risk science teams. Grow their skills and careers.
  • Build strong relations with Data Science teams at financial institutions, ranging from VP-level executives all the way to hands-on data scientists.
  • Thoroughly understand the capabilities of the Credit Karma machine learning platform, and help drive requirements as well as directly enhance Karma’s capabilities.
  • Optimize and guide the Partner model building and analytics process, in order to achieve optimal results. Coach partner Risk teams on machine learning capabilities provided by the CK platform, while getting in their shoes and speaking their language.

Our ideal candidate

    • Advanced Degree (Ph.D./MS) in Statistics, Math, Engineering or a related quantitative discipline.
    • 6+ years of experience in statistical analysis and modeling especially underwriting, customer segmentation, customer valuations.
    • 4+ years of experience building and implementing complex models in a financial risk / data science environment. Experience with consumer credit data a must-have.
    • Expert knowledge of Python (or R or SAS), and SQL, or similar industry standard tools used for large-scale data analysis and modeling.
    • Experience and/or interest in latest machine learning techniques (Random Forest, Gradient Boosting Trees, Deep Learning) and tools (SciKit-Learn, Hadoop, Hive, etc) strongly preferred.
    • Experience leading or interfacing with teams at Financial institutions strongly preferred.
    • Self-motivated, results oriented, enthusiastic, and a creative thinker.

Additional Information

  • Travel required.